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ABSTRACT 

The DOVE tool supports high-level system modelling and design, and for- 
mal reasoning about critical properties. DOVE uses state-machine graphs to 
illustrate designs, thus building on a familiar and effective means of commu- 
nicating system designs to a wide audience. DOVE employs a propositional 
temporal logic to express desirable behavioural properties of the design, and 
presents it in a sequent calculus syntax for ease of manipulation. A verification 
procedure which can handle temporal properties of DOVE state machines is 
included through high level tactics in a graphical proof tool interface. The 
DOVE program is committed to developing proof visualization techniques to 
complement the power of this proof scheme. This paper presents the theoretical 
structure underlying the DOVE tool. 
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State-Machine Modelling in the DOVE System 

EXECUTIVE SUMMARY 

Defence work involves a large number of critical systems which require the highest 
levels of engineering assurance. Safety and security concerns are the most obvious. The 
achievement of such high levels of assurance must be based on rigorous analysis techniques, 
the most sophisticated of which make use of formal languages with strictly-defined seman- 
tics and are referred to as formal methods. Indeed, a number of international standards 
mandate the rigorous analysis of system designs through the apphcation of formal methods 
techniques. Thus, there is a clear need for tool support which will facilitate sudh analyses 
through the various stages of the design process. 

The tool for Design Oriented Verification and Evaluation (DOVE), was developed 
by the Defence Science and Technology Organisation (DSTO) in Australia to meet this 
challenge. It provides a simple, but powerful, means of applying formal modeUing and 
verification techniques to the design of safety- and security-critical systems, adopting the 
ubiquitous state-machine as its basic design model. State machines are a familiar and 
effective ineans of communicating system designs to a variety of stakeholders, and are 
easy to represent and to manipulate with a graphical user interface. DOVE also makes 
strong use of the Isabelle proof tool: from parsing of user input, through a definitional 
embedding of the entire logical model for state machine analysis, to the statement and 
verification of critical properties. 

The aims of the DOVE project are fourfold: 

1. to answer the challenge of providing appropriate tool support for machine design; 

2. to provide a temporal logic sufficiently rich to specify critical properties of the ma- 
chine, and to support a sufficiently powerful proof methodology for their verification; 

3. to provide a visual interface between the user and the proof tool, thereby enhancing 
the trust in the analysis; and, 

4. to introduce sufficient tactical structure so that the proof methodology is at a user- 
friendly level. 

This paper details the system-description language, and the temporal logic language 
used to describe system properties. It describes the logical model in which the state 
machine can be analysed, and the calculational and tactical framework for verification of 
the system properties. 
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Chapter 1 

Introduction 

In a critical system (e.g., safety-critical or security-critical), if a process misses some 
deadlines or fails to respond to some important events then a fault may develop. The 
consequences in a real-world system could include an accident, a security breach, or other 
corresponding undesirable results. Many faults are introduced at the requirements-capture 
and design levels, and are propagated through further development. The first hne of de- 
fence against such disasters is a clear and precise design, with trustable analysis to verify 
that the design implements desired critical properties. The critical properties themselves 
must be clearly stated, and - since critical systems are most effectively specified by their 
ongoing behaviour - this is best done in a temporal logic. 

Our previous work [6, It)] has shown that formal methods - such as formal specifica- 
tion, along with design and code verification - can provide the highest level of assurance 
for critical systems, and should therefore be used throughout the design stage. Indeed, 
their use is mandated by a number of international standards (for example UK Defence 
Standards 00-55 [1>] and 00-56 [13]; ITSEC [11]; and Def(AUST) Standard 5679 [1]). 

The DOVE (Design Oriented Verification and Evaluation) system is a powerful de- 
sign tool which is being developed to support such analysis. The over-riding principle in 
DOVE'S construction, originally proposed in [2], is to provide a minimalist approach to 
the application of formal methods. In other words, it should aid the different participants 
of the design process without significant disruption of their standard practice. At the same 
time, the formal analysis must be consistent at all levels of the tool - from the tool itself, 
to the theories it produces for the user to reason with. 

One manifestation of these principles is the use of state-machine graphs to present 
designs. The state machine paradigm is a widely-used system design model, forming an 
important component of many existing approaches. State machines are particularly suit- 
able in interactive tool support for the design process. Not only can the diagrammatic 
representation of a state machine effectively communicate the design to the many dif- 
ferent participants in the design process, they are also a powerful and flexible model of 
computation in which a wide range of design issues can be treated at a convenient level 
of abstraction. In particular, they are amenable to the application of powerful automated 
tools such as silicon compilers, as well as formal analysis techniques. A high level of 
assurance can be gained by a combination of two aspects: detailed evidence of a machine- 
checked formal proof, together with a high-level argument at the diagrammatic level that 
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can be easily understood by, and communicated to, humans. 

^ DOVE state machines are much more general than what is known in the literature as 
a "finite state machine". Indeed, the allowed variable types are essentially arbitrary, so 
there is no restriction to a finite configuration space. 

Another application of the development principles, which is somewhat hidden from the 
user, is the fact that the logical structure for the DOVE tool is definitionaJly embedded in 
the Higher-Order Logic (HOL) of the Isabelle [.U] proof tool. Moreover, the theories the 
tool produces for reasoning about a given state machine are built directly on top of this 
structure. From the parsing of user input to the application of tactics in verification, all 
analysis is directly carried out in the Isabelle proof tool. 

Adopting the state machine paradigm, the aims of the DOVE project are fourfold: 

1. to answer the challenge of providing appropriate tool support for machine design; 

2. to provide a temporal logic sufficiently rich to specify critical properties of the ma- 
chine, and to support a sufficiently powerful proof methodology for their verification; 

3. to provide a visual interface between the user and the proof tool, thereby enhancing 
the trust in the analysis; and, 

4. to introduce suflScient tactical structure so that the proof methodology is at a user- 
friendly level. 

We now outline where these aims are elaborated in the present paper. 

The tool support architecture is outlined in Chapter 2. Later sections contain the 
concrete syntax which enables user interaction with the DOVE tool. In particular, the 
system-description language used for specifying state machines appears in Chapter 3, along 
with an example of a theory for traffic lights design. 

Chapter 4 defines the language for describing machine properties. This language is a 
temporal logic, its semantics is a trace-based extension of that of the system-description 
language. A temporal property is then a predicate over histories. The temporal operators 
are defined in this model, and a sequent calculus structure is established. Reasoning 
about machine properties can then be pursued in the temporal logic model, once it has 
been restricted from arbitrary histories (traces) to actual machine executions as informed 
by the state machine. 

Chapter 5 collects the calculational constructs required for verifying machine proper- 
ties. We establish a sequent calculus for representing and manipulating the properties. 
The sequent calculus is very good for "static" properties; i.e., for dealing with the predicate 
logic structure. However, we propose that the temporal aspects be handled by an induc- 
tive application of high level symbolic animation techniques such as back-substitution. 
Thus we introduce the notion of predicate transformers, and a scheme which iteratively 
constructs the weakest invariant which will imply a desired property (or will negate a false 
property in a finite number of iterations). 

In the current version of DOVE a variant of this scheme is implemented, as explained 
m Chapter (i. As an example, certain properties of the traffic lights design are verified. 
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Finally, Chapter 7 contains a discussion of the related literature, and concludes with 
remarks on future development of the tool. 

The manner in which the third and fourth aims are implemented by these constructions 
is briefly mentioned at various points throughout the paper. We leave further elaboration 
to a later publication. However, it is worthwhile commenting here on the nature of formal 
analysis with interactive proof assistants. By the nature of highly-interactive computer 
proof assistants, each proof step is typically "small" - making it difficult to grasp a higher 
level view of what a given sequence of steps achieves. On the other hand, while for 
automatic theorem provers the required user-input is typically minimal, they generally 
provide httle visibility of the proof. This leads to the serious drawback that, when they 
fail to prove a result, essentially no information is given to the user. A user then needs 
to assess how the required result could be obtained by partitioning it with lemmas - this 
requires a deep understanding of the theorem prover. 

Proof steps which are too small can frustrate the user, while those that are too big 
can disorient the user by their severe alterations of the proof state. It is important that 
a computer proof assistant can not only perform trivial tasks unguided - thus displaying 
some levels of automation - but should also allow proof steps controlled by the user that 
are predictable, comprehensible, and natural in the given domain. There is a lack of tools 
that moderate between these highly interactive and highly automated extremes. Thus, 
it is the aim of the DOVE project to build tactics which provide proof commands at a 
medium level of granularity. The basic structure of these tactics will be evident from the 
discussions in this paper. 

The approach we employ in implementing the DOVE tool is rather generic, and it 
may therefore be of interest for the design and analysis of other such tools. Moreover, 
the solid treatment given here of the corresponding theoretical underpinnings, and also of 
the proposed methodologies, may aid the user to apply the DOVE tool more effectively in 
specific applications. 
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Chapter 2 

Architecture of the DOVE system 

The architecture of the DOVE tool is reviewed in this section. This is a brief overview 
only, as desired background for a proper understanding of the paper. Further details about 
the tool can be found in the user manual [2]. 

As shown in Figure 2.1, the DOVE system has three main components: 

• The state-machine editor, a graph editor used for constructing state-machine dia- 
grams; 

• The state-machine animator that is used for exploring symbolic execution of a state 
machine; and 

• The prover that is used for verifying critical properties of a given machine. 

It has been built using three existing tools and/or languages: the Tcl/Tk script language 
[■'• 1 ], the functional programming language ML [ !'^], and the proof-checking system Isabelle 
[Ml]. The user interface providing the graphical representation of the state machine is 
implemented in Tel and Tk. The associated process-communication language, Expect [20], 
is used to implement communication with the semantic representation of the machine in 
ML, and with proofs carried out in Isabelle. Proof-system level visualisation, and pretty 
printing of formulae, are provided by the Xlsabelle interface, while application-domain 
level visualisation of proof using the state-machine diagram is implemented in Tcl/Tk. 
The high-level tool use is straightforward: 

• Using the state-machine editor, a state-machine design is set out. A state-machine 
diagram consists of labelled nodes representing the allowed states the machine can 
be in at any given time instant, and labelled directed edges between the nodes 
representing the allowed transitions. 

• The state machine definition continues by entering desired types, variables and con- 
stants, and the transition definitions, through the graphical interface. 

• Once a state-machine definition has been saved such that all its transitions have 
been defined, an Isabelle theory for that machine can be automatically generated. 
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Figure 2.1: The structure of the DOVE tool 

• A proof can be commenced by starting up Xlsabelle and loading the machine-specific 
theory in Isabelle, on top of the general DOVE theory for reasoning about state 
machines and properties. 

2.1    Embedding in a theorem prover 

The DOVE system uses Isabelle [.M], a powerful automated proof tool, to provide 
the basic logical and bookkeeping features for reasoning about state machine designs. In 
particular, all parsing of user input is carried out directly in Isabelle, and even an animation 
step IS (automatically) computed as a theorem in Isabelle. Isabelle is a generic logical 
framework in which a variety of object logics and domain theories can be represented 
One of the appeals of Isabelle is that it is quite an "open" system. From the user's point 
of view this means that essentially arbitrary types and mathematical/physical theories 
can be supported, thus providing a very powerful tool in principle. From the developer's 
viewpoint the bonus is that there is much that can be "added on" to improve proof 
management and structure, thus providing a very useable tool in principle. 

The Xlsabelle graphical user-interface [:!2] to Isabelle has been tailored to provide the 
interactive proof component to DOVE. Proof support includes: a browser that displays 
theory information in a form which is easy to read; a tactic tree viewer which graphically 
represents the overall structure of a proof in progress, and allows easy re-use of proof steps; 
and a proof history which can be displayed, saved, and re-used. 

Proof in Isabelle typically works by applying rules in a goal-directed fashion by means 
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of a subgoal package. For example, the proposition to be proved can be resolved with the 
conclusion of a rule to produce subgoals. The main building blocks of goal-directed proof 
in Isabelle are tactics, which apply to a proof state, returning a new proof state. Tactics are 
composed using tacticals, such as THEN, ORELSE and REPEAT. Proof tactics have been 
formed as a formal proof component of the DOVE system. While the detailed discussion 
about proof tactics will appear in another paper, a few observations are in order. 

• There are quite a number of higher-level logical operations which the Isabelle system 
and meta-logic provides "for free", and which proved to be very useful. These aspects 
include unification, beta-reduction in the meta-logic, and general frameworks for 
rewriting and classical reasoning. 

• The relatively low-level basic tactics, such as resolution, form the ideal components 
to construct the tactics we required. At times, an even lower level of proof steps 
would be desirable. For example, there are no convenient facilities for focusing on 
parts of a subgoal, say to do a single rewrite of a subterm. The use of pattern- 
matching and the ML programming language enables this to be overcome to some 
degree. 

• The generation of a machine specific theory including a set of tactics can be thought 
of as a compilation process. Domain-oriented proof steps are "compiled" into tactics 
for use in a general-purpose low-level proof checker (Isabelle). More traditional 
approaches to tactic construction are like interpreters, where the tactic is the same 
for all state machines, and is only dynamically applied to a given specific example. 
The DOVE approach can have advantages similar to those that program compilation 
has over interpretation; for example, tactics can be optimised with respect to a 
specific state-machine. 

An effort has been made to use the state-machine diagrams to direct and control proofs 
in the formal proof procedure. By the use of graphical interfaces at the level of state- 
machine diagrams, and in the proof tool, DOVE provides some functionality of "proof 
visualisation" [10]. This can be of great benefit for the user working to understand and 
communicate the proof, as well as to control its construction. 
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Chapter 3 

A system-description language for 
state machines 

A state machine is modelled to consist of a finite number of states, together with a memory 
which is a binding of values to variables, and a set of transitions which describe how the 
state machine may evolve from state to state. This is a common style of description 
in traditional design methodologies. It also provides an easy way to display the design 
graphically, by transition graphs in which states are denoted by nodes, and transitions are 
denoted by directed edges between nodes. We refer to the corresponding diagram as the 
state-machine diagram. 

In this section we discuss the system-description language for expressing state-machine 
designs, beginning with an example of its use in a model of traffic lights - the required 
syntax is presented in Appendix A. We then explain the abstract model DOVE produces 
from the user's input. 

3.1    Example: the design of the TrafRcLights 
machine 

We first present an example of machine specification to illustrate the use of the system- 
specification syntax. Our belief is that the syntax is clear enough to be understood directly, 
but we also give a full description in Appendix A. 

We call this example the TrafficLights theory. This design models the behaviour of 
traffic lights controlling a four way intersection. The basic behaviour the system being 
modelled is easily understood from the state-machine diagram in Figure 3.1: the EW and 
the NS lights pass alternately through the green-amber-red cycle. 

Variables and constants are introduced to describe the obvious traffic-light attributes, 
and some simple effects of the traffic environment. In particular, the number of cars 
waiting at a red light is computed (e.g., NCars + Scars for the EW cycle) so that when it 
exceeds some specified maximum the lights in the other direction will turn amber. Further, 
this amber phase has a predetermined duration, AmberTimeOut, so that the light changes 
to red after the time has increased by this amount. Finally, there are alternative "Wait" 
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Figure 3.1: A state-machine for traffic lights design 

transitions at each of these light changes which are enabled precisely when the actions 
described above are not. These are included to remove the possibility of deadlock from 
the system. 

The following is the Isabelle/Isar theory file produced automatically^ by DOVE from 
the user input. 

theory TrafficLights = DOVE: 

startmachine 

states AllRed  I EWAmber I EWGreen  I NSAmber  I NSGreen 

datatype Colour = "fied"  /   "Amber"  I   "Green" 

datatype Direction = "EW"  /   "NS" 

consts 
"MaxCars" ::   "nat" 
"MaxTime"  ::   "nat" 

inputs 

Note that the double quotation marks arc required Isahclle syntax. 

10 
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"ECars" :   "nat" 

"NCars" : "nat" 

"SCars" : "nat" 

"WCars" ; "nat" 

"time"  : "nat" 

heaps 

"AmberTimeOut"  ::   "nat" 

"ELight"  ::   "Colour" 

"LastGreen"  ::   "Direction" 

"NLigbt"  ::   "Colour" 

"Slight" ::   "Colour" 

"WLigbt" ;: "Colour" 

initpred 
"(NLigbt = Red) &  (SLigbt = Red) & (ELigbt = Red) &  (WLigbt = Red)" 

transdef "NSChangeGreen"  " 

Guard: LastGreen = EW 

Act: NLigbt <— Green; 

Slight <~ Green;" 

transdef "El/ChangeRed"  " 

Guard: ^berTimeOut < time 

Act: ELigbt <— fied; 

WLigbt <— Red; 

LastGreen <— EW;" 

transdef "EWChangeAmber"  " 

Let;  NSnum <—   (NCars + SCars); 

Guard: MaxCars < NSnum 

Act: ELight <— Amber; 

WLigbt  <— ^ber; 
AiDberTiineDut  <—  ftime + MaxTime);" 

transdef "NSChangeAmber"  " 

Let: EWnum <—   (ECars + WCars); 

Guard: MaxCars < EWnum 

Act: NLigbt <— Amber; 

Slight <— Amber; 

AmberTimeOut <—  ftime + MaxTime);" 

transdef "JVSChangefied"   " 

Guard: AmberTimeOut < time 

Act:  NLigbt <— Red; 

Slight <— Red; 

LastGreen <— NS; " 

11 
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transdef "EWChangeGreen"  " 

Guard; LastGreen = NS 

Act: ELigbt <— Green; 

WLight <— Green;" 

transdef "WaitEW"  " 

Let: EUnum <—  (ECars + WCars)  ; 

Guard: Not  (MaxCars < EWnum) 
Act: Skip;" 

transdef "WaitNS" " 

Let: NSnm <—  (NCars + SCars)  ; 

Guard: Not  (MaxCars < NSnum) 
Act: Skip;" 

transdef "WaitTO" " 

Guard: Not  (AmberTimeOut < time) 
Act: Skip;" 

graph  "AllRed"  " 

EWGreen —EWChaiigeAmber—> EWAmber 

I AllRed —EWChangeGreen—> EWGreen 

I EWAmber —EWChangeRed—> AllRed 

I NSGreen —NSChangeAmber—> NSAmber 

I AllRed —NSCbangeGreen—> NSGreen 

I NSAmber —NSCbangeRed—> AllRed 

I NSGreen —WaitEW—> NSGreen 

I EWGreen —WaitNS—> EWGreen 

I EWAmber —WaitTO—> EWAmber 

I NSAmber —WaitTO—> NSAmber" 

endmachine 

end 

3.2    Abstract model for state machine design 

The DOVE state machine language provides a convenient method of describing com- 
plex state machine designs in human readable format. However, it is not the most conve- 

nient format for describing or supporting the verification of temporal properties of state 
madunes. For this we introduce an abstract model of state machines. 

The observable attributes of an abstract state machine are the current logical state, 

12 
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the last transition, the current values of the input variables, and the current values of the 
heap variables. Collectively we refer to these observables as the configuration of the state 
machine. The dynamics of a state machine's behaviour are described by three components. 

1. An initialisation predicate, determined by the initpred command, restricts the al- 
lowed initial values of the heap variables. 

2. A state-transition graph describes the initial state and the allowed transitions be- 
tween states. 

3. A transition table describes the way in which each transition updates the heap 
variables. It is determined by the various transdef commands, which have three 
parts: 

• the let declaration which introduces new local variables to be used to abbreviate 
expressions; 

• the guard which restricts the allowed current values of the input and heap 
variables for the machine to pass through the transition; and, 

• the action list, the aforementioned parallel assignment to heap variables. 

An empty Guard part is interpreted as True, while an empty Act part is interpreted 
as the action Skip which assigns all heap variables their value in the current config- 
uration. 

Clearly input and heap variables are treated very differently. This is because input vari- 
ables represent the points at which external entities may influence the machine evolution. 
Their values may be accessed, but not updated by the machine. In contrast, heap variables 
hold values that persist from state to state unless explicitly updated via a machine transi- 
tion. They can be internal to the machine, or can represent points at which the machine 
communicates to external entities. Their values may be both accessed and updated by the 
machine. 

The other state machine commands serve to determine the types of the various com- 
ponents of the configuration. They also serve to build up a name space for referring to 
the configuration components in the definition of the state machine dynamics. The way in 
which a state machine model is built from a state machine definition is described below. 

3.2,1    Configuration types 

The states command causes an Isabelle type stateDT to be declared. The type contains 
exactly one element for each state of the state machine. Similarly the transdef commands 
collectively cause the declaration of an Isabelle type transitionDT which contains exactly 
one element corresponding to each transdef command. 

The types of the various input variables introduced by the inputs command are used 
collectively to declare an Isabelle type inputTY. A value of type InputTY is a composite of 
the values of the individual inputs. Similarly the types of the various heap variables are 
used to define a collective type heapTY. 
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The overall configuration type is then defined to be the cross product of the four 
component types. 

configTY = stateDT x transitionDT x inputTY x heapTY 

3.2.2 Namespace environment (R- and L-values) 

The various names introduced by the states, transdef, inputs, and heaps commands 
are collected mto a database to aid in the interpretation of the state-machine definition. 

The correspondence between the state names introduced by the states command and 
the elements of the stateDT type is recorded. A similar correspondence is recorded between 
the transition names and the elements of transition DT. 

The treatment of the input and heap namespaces is more complex. 

• For each input name we record the way in which the value of that particular input 
may be extracted from a configuration. This function is called the R-value of the 
mput, and for input variable I is described by an Isabelle term of type 

RI : configTY -^ Xj, 

where Xi is the value type of input variable I. 

• Similarly, we record the way in which the value of each input may be updated in the 
collective input type. This function is called the L-value of the input and for input 
variable i is represented by an Isabelle term of type 

LI : ;\:'i -^ configTY -+ configTY. 

• We also construct the R- and L-values for all heap variables. 

The namespace database thus constructed is used to inform the interpretation of the 
state machine definition proper, by determining the underlying Isabelle terms referred to 
by each of the names of the states, transitions, inputs, and heaps. In the syntax simply 
the variable name is used, and whether this requires R- or L-value is obvious from the 
context. The details of how this interpretation is performed for each of the state machine 
definition commands is described below. 

3.2.3 The abstract state-machine type 

Corresponding to the three components which describe its dynamical behaviour, we 
represent an abstract state-machine as a record with three fields. 

1. The field inip  :: configTY -. E records the initialisation condition. 

2. The field graph :: stateDT x (edge stateDT transitionDT stateDT) list records the 
state machine control graph. Hero edge denotes a ternary type constructor for an 
abstract "edge" type, while list is the standard unary list-type constructor. 
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3. The field tranf   ::  transitionDT -+ stateDT -> stateDT -* inputTY -^ ((configTY -> 

B) X (configTY —> configTY)) records the transition table. 

We now elaborate in turn the construction of the three fields for a record M corresponding 
to a given state machine definition. We will refer to "the state machine M". 

3.2.4    The inip field 

The boolean expression which the user inputs in the initpred command is translated to 
a predicate on configurations by interpreting each occurrence of an input or heap variable 
as the corresponding R-value. We will refer to this as the R-value interpretation of the 
expression. Then inip M. is set equal to the resulting predicate. 

3.2.5    The graph field 

The graph command is directly translated into a tuple consisting of the chosen initial 
state, and a list of edges in the state machine graph. 

An edge is modelled as an abstract datatype with a single ternary type constructor 
edge. For h, e : stateDT and t: transitionDT, we will write the edge, edge b t e, as 

bie, 

and say that b is the begin state, e the end state, and t the connecting transition of the 
edge. 

For ease of notation we will introduce a name for the initial state (the machine name 
to be understood in context), 

InitialState = fst(graph M). 

3.2.6    The tranf field 

In the abstract model, state machine transitions are represented as a guard/action pair. 
The construction takes a number of steps. Consider first the general transdef command 

transdef t 
Let: Xi <— xi; X2 <— X2; ... ; 
Guard: expr 
Act: Hi <—hi; H2 <—h2; ... ; 

The most direct translation gives the guard/action pair with components 

guard t : configTY —> E 

and 
action t : configTY —> configTY 
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as follows. 

• The component guard t is directly obtained by R-value interpretation of the boolean 
expression in the Guard part. 

• The action corresponding to a term H<-h in the Act part is assignment to the 
heap variable H. Specifically, the heap variable H on the left of the assignment is 
mterpreted by its L-value, and it updates the current configuration with the value 
of the expression h (obtained by R-value interpretation) evaluated in the current 
configuration. 

• For all required assignments, the corresponding expression must be evaluated in the 
current configuration. The total updating action is then obtained by iteration, 

action t = (Ac • LHj (hi c) (LH2 (h2 c)... c)). 

• Finally, the local variables are replaced with their corresponding expressions (ob- 
tamed by R-value interpretation) evaluated in the current configuration. 

The result is indeed a guard/action pair, in which a given transition action is only deter- 
mmmg the values of heap variables in the next configuration. However, at any point in 
the abstract machine evolution the configuration must reflect the current state and the 
last transition. Thus it is convenient to lift the guard/action pair to fix the correct current 
state and update the next configuration appropriately. 

The input variables, however, are not assigned to in a transition definition for the very 
good reason that the machine has no control over the environment. However, we will see 
that verification support is streamlined if we take a "closed system" view of the dynamics 
m which the input variables are assigned "fresh undetermined values" in each transition' 
Thus, we must also lift the action to fix a value for all input variables. We will see in the 
semantics how the fresh input value is obtained. 

For each transition name t, the guard/action pair of the state machine M for the 
corresponding transition from state b to state e - while updating the input value to i - is 
then given by 

tranf Mtbei=   ((Ac • fst(c) = 6 & guard t c), 

(Ac • (e, t, i, snd(snd(snd(action t c)))))). 

The^ clumsy use of fst and snd is simply to pick the correct part out of the (resulting) 
configuration. For later ease of notation we introduce names to denote the different parts 
of the tranf tuple (with the machine name M to be understood from the context) 

G^t_^    = fst(tranf M t b e. i) 

T'^,^    = snd(tranf M t b e i). 
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3.3    Relational semantics of the model 

An effective interpretation of the abstract state-machine model is that provided by 
transition systems. A transition system over the space of configurations corresponding to 
a given state-machine M, is specified by an initial configuration predicate LM '■ configTY -^ 
M, together with a transition relation UM '■ configTY -> configTY -^ B between configu- 
rations. An execution of the state machine At is a list of configurations such that: 

• the initial configuration satisfies LM \ and, 

• any two subsequent configurations in the execution are related by T^M ■ 

We defer the development of the dynamic model until we have introduced the temporal 
logic. Let us just see here how the interpretation applies in DOVE state-machines. 

Relational semantics are appropriate since they naturally allow for nondeterminism. 
In DOVE state-machines the root of the nondeterminism is through the input variables - 
we have observed above that the transition relation must not determine the value of the 
input variables in the next configuration since these describe the environment external to 
the machine. The transition action in the abstract model is otherwise deterministic. The 
initial condition^ for the transition system corresponding to state machine M is 

I'M (S) *,i, m) = {s = InitialState &: inip M (s, t, i,m)). 

To every edge e = 6 * e in snd(graph M) we can associate a relation p^ between configura- 
tions, 

Pf^ c c' — 3 i * Ge c &i c — J-l c. 

Note that encoding the transition in a guard/action pair with fixed inputs allows us to 
decompose the transition relation into a guarded assignment. Although the total assign- 
ment function deterministic, the input which is assigned, z, is existentially quantified and 
thus its value left undetermined as required. The total transition relation of the transi- 
tion system, TIM, is simply the relational disjunction over edges of the individual edge 
transition relations. 

^Note that the vahie of the transition component in the initial configuration is arbitary, except that it 
must be a transition of the state machine topology. In this way, without requiring a variant form for the 
initial configuration we cope with the fact that no transition is traversed to produce it. 
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Chapter 4 

A Temporal Language for 
Properties of State Machines 

The properties we wish to estabHsh for critical devices assert that whatever state is reached, 
no bad thing has happened so far (that is, a fault which may lead to an accident or security 
breach). In other words, for any finite length of time, a property holds for the duration of 
that time. Such a property is called a safety property. Heuristically, it asserts the absence 
of undesirable states, in contrast to what are generally called liveness properties, which 
assert that good things do happen [.]]. 

Because we are only interested in safety properties we interpret the behaviour of the 
machine by its histories: finite sequences of configurations. Moreover, actual machine 
executions are histories which begin in the initial state satisfying the initial predicate, and 
each subsequent configuration is then reached by some transition of the given machine. 
Without loss of generality, then, we only consider non-empty histories. The safety prop- 
erties of interest will be execution properties; i.e., properties whose vahdity can be tested 
over a given execution. 

In this section we first introduce an abstract syntax model for the language of system 
properties. Compared to the concrete syntax - presented for convenience in Appendix B 
- this make the types explicit for ease of semantic translation. The interpretation in the 
history-based model follows, after which we formalize the notion of property verification. 

4.1    Abstract model of the property specification 
syntax 

The syntax for specifying system properties in DOVE can be considered abstractly as 
introducing the type of temporal logic formulae, constructed as indicated in the following 
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"datatype". 

Temp   ::= true | false | first 

I pred((configTY ^ B)) | Not((Temp)) 
I init((Temp)) | Previously ((Temp)) | Always ((Temp)) 
I Sometime((Temp)) | PreviouslyS((Temp)) 
I ((Temp)) A ((Temp)) | ((Temp)) V ((Temp)) 
I ((Temp)) =;> ((Temp)) | ((Temp)) 4^ ((Temp)) 

I ((Temp))FromThenOn((Temp)) | ((Temp))FromThenOnS((Temp)) 
I MostRecently ((Temp)) ((Temp)) | MostRecentlyS ((Temp)) ((Temp)) 
I V((^->Temp))|3((/?^Temp)) "^'      ^" 
I At((stateDT)) | By((transitionDT)) 

We have chosen the notation such that the correspondence between the concrete and 
abstract syntax is obvious, except possibly in the three cases we now address. 

• A nontemporal formula is interpreted as a configuration predicate (by R-value in- 
terpretation). A further constructor must be added to hft nontemporal formulae to 
temporal formulae, and thus we introduce pred : (configTY -i 1) -> Temp. As an 
example, note that the nontemporal formula 

X = 3=>y < z. 

translates to 

pred(Ac • /?x c = 3)=4> pred(Ac • Ry c < Rz c), 

where x, y, z are variables of concrete type N. 

• Standard binder notation is used for the quantifiers. Thus, we write Nx • P x) for 
(VP)and(3.T.Pi)for(3P). ^ 

• The special constructors At : stateDT ^ Temp and By : transitionDT -> Temp allow 
the user limited access to the "logical" part of the configuration, without the problem 
of needmg to be careful in writing sensible expressions. Their types have been made 
explicit in passing from abstract to concrete syntax. 

The proof system will be represented by terms in the sequent calculus style. A sequent 
consists of a list of temporal formulae T = {p,}p^„ known as the hypotheses, and a target 
tormula q, known as the goal. Sequents are expressed by terms of the form pi,..    p^\-q 
or simply F h g for brevity. Thus, in this mixfix syntax, h: Templist -^ 1.       '      ' 

4.2    Trace-based semantics of the 
property-specification syntax 

The semantics of temporal formulae is dotcrminod by interpreting thorn on hiMoric; 
A history is represented by a (non-empty, finite) list of configurations (i.e., an element of 
the set configTY+). A temporal formula is interpreted as a history predicate - a function 
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from histories to truth values. We will use the same notation as above for the constructors 
in the temporal formulae, without distinguishing the semantic translation. 

Following common practice we simplify the description of proof and semantics for tem- 
poral formulae by distinguishing a "core" collection of the constructors, and interpreting 
the other operators in terms of this core. The core temporal constructors we adopt are 
true, A, V, pred. Previously, and FromThenOn. The other operators are eUminated 
via the following equivalences. 

false = Not true 
Not Not p = p 

pVq = Not(Not p A Not q) 
p=^q = Not p V 9 
p<^q = {p^q)A{q^p) 

36 • p{b) = Not(v6 • Not p{b)) 
first = Previously false 

PreviouslyS p = Not(Previously(Not p)) 
Always p = false FromThenOn p 

Sometime p = Not(Always(Not p)) 
init p = Always (first=4>p) 

FromThenOnS p q = (Sometime p) A (p FromThenOn q) 
MostRecently p q = (p A g) FromThenOn (p^q) 

MostRecentlyS p q = (p A g) FromThenOnS {p=^q) 

4.2.1    Semantics of temporal formulae 

We introduce the following notation for treating histories, where p denotes a (possibly 
empty, finite) list of configurations. 

- The history with elements a, 6, c is represented by (a, 6, c). 

- The concatenation of p and history a is denoted by p^<j. 

- The prefix relation on histories is denoted by (-:^ -)■ 

- The last ("current") element of a history a is denoted by [a; that is, 

i(r») = a. 

- The front of a history a (its "previous history") is denoted by a~; that is, 

(p-(a))- = p. 

Note that all these operations are well-defined on histories except for "front", which only 
produces a history if taken on a history of length larger than one. 

The notion that a given history satisfies a temporal formula is now captured as the 
statement that a history a models the temporal formula p, written a \= p, defined induc- 
tively by 
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- a f= true iff True; 

- a 1= pred h iff 6(ia); 

- a 1= At 5 iff for some t, m, i, (ja) = (5, f,, z, m); 

- tr t= By T iff for some s,m,i, (ja) = (s,r,i,m); 

- cr ^ Not g iff not a \= q\ 

- cr|=gA7"iffcr|=g and a |= r; 

- a 1= Vx • (gr a;) iff for all x, CT |= (g x); 

- (T ^= Previously g iff cr~ = ( ) or a~ |= g; 

- (T f= g PromThenOn r iff either, 

- for all histories a' with o' :< cr, a' ^= r, or else, 

- there exists a history a" with a" < a such that a" |= g and for all histories a' 
with or" :< 0-' :< <T, a' |=r r. 

We say that a formula p is va/id, written |= p, if and only if for all histories a, a f= p. 

In summary let us reinterpret these definitions in terms of history predicates. Tem- 
poral formulae are predicates over histories, the temporal constructors generate temporal 
formulae from configuration properties. Thus, the statement a ^= p is equivalent to (p a), 
the prepositional constructors are just the obvious lifts, and validity is just entailment 
(from true). 

4.2.2    Semantics of the turnstile 

In reasoning about state machine properties we must restrict from all histories to 
executions obtained by the evolution of a given machine. Let M be a state machine. If a 
is an execution of M we write a\=M. Then we say that a temporal formula p is M-v&Xx^ 
if and only if for all histories o such that a \^ M (that is, all executions of M), cr |= p. 

The semantic definition of the sequent turnstile now proceeds similarly The boolean 
r I- p is true if and only if for every history a such that a |= M, o- [=. p or else there is 
some g in r such that not cr |= g. 

To be even more specific, let t\V denote the temporal property which is the conjunction 
of all the hypotheses in T. Then T h p if and only if the temporal formula ((AT) =» p) 
is A4-valid. Thus, verification of a machine property p is simply demonstrating that p is 
A^-valid, or equivalently I- p. 

As a final rewriting, it will bo convenient in the discussion of sequent calculus to 
introduce the history predicate Exec^ which characterizes executions; that is, 

EXOCTK = (ACT • a |= M) . 
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Then, we have Thp- i.e., {{/\T) => p) is M-vaM - if and only if 

(((A ^) ^ ExecTw) ^ p) is vaHd. 

One could think of validity without the history predicate as a "pure temporal logic" turn- 
stile. Although we will not introduce a separate syntax, we will refer to this as "reasoning 
at the abstract temporal logic level". Thus we see that the difference between reasoning 
at the level of the machine, and at the abstract temporal logic level, is manifestly just 
the inclusion of an additional hypothesis EXBCM in all sequents. We will see that this is 
nontrivial in the next section. 
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Chapter 5 

A calculational scheme for 
verifying machine properties 

In this section we consider the proof system for verifying machine properties. It is presented 
in terms of sequent calculus, so the backbone is a set of structural rules for manipulating 
sequents, including the usual prepositional calculus. The sequent calculus is ideal for en- 
coding the structural reasoning in an immediate manner which aids the proof visualization 
which the DOVE tool is striving for. 

However, it will have already been obvious from the semantics in the previous section 
that reasoning with temporal operators such as FromThenOn is fraught with difficulties. 
The definitions are not always intuitive, and temporal notions are notoriously ambiguous 
and context dependent. Thus, although one can extend the sequent calculus to include 
temporal operator introduction and elimination, and even detailed induction rules, this is 
not the focus of the DOVE proof system. 

Instead, in DOVE an iterative calculational scheme is employed which - loosely speak- 
ing - drags the proof burden back to initial conditions by "backsubstituting" the property 
through the transitions of the machine. All temporal operators are then dealt with through 
this induction. 

The notion of backsubstitution, and an outline of the calculational scheme, are pre- 
sented below, after a discussion of the sequent calculus. The implementation in the current 
version of DOVE is discussed in the next section. 

5.1    A calculus for manipulating sequents 

Proving a machine property usually involves a combination of temporal and non- 
temporal reasoning. For non-temporal reasoning, we need two kinds of rule: structural 
rules, which specify how one may combine, add to, delete from, and rearrange properties 
within a sequent; and non-temporal operator introduction rules - further classified into 
left and right introduction rules for A, -i, V=4>, V and 3 - which are used for reconstructing 
a sequent in reasoning about properties of a machine. 
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For temporal reasoning, there are similar temporal operator introduction and elimina- 
tion rules, as well as induction rules which allow reasoning about the temporal operators 
FromThenOn and Always inductively over histories. As discussed above the former 
are not crucial in the DOVE proof system, and from the latter we will just use forwards 
induction for Always as arises naturally in the calculational scheme presented in the next 
section. 

All of these axioms and rules are straightforward to prove in the semantics of the 
previous section. That is, their soundness may be demonstrated straightforwardly and 
we omit the proofs which are somewhat tedious. 

5.1.1    Non-temporal sequent calculus in DOVE 

The variable conventions used in the following are: 

p,g,r,...,pi P2, • •. history properties 
r,A hypothesis lists 
AlwaysF distributed operator 
x,y,... variables 
x: R a variable x with the type R 
a,b... constants 

5.1.1.1 Axioms 

=—;—(basic)  (T) 

p-p-—^(TP)    all P such that for all C, P C 

5.1.1.2 Inference rules for non-temporal reasoning 

Non-temporal inference rules can be classified into two classes as follows. 

(1) Structural rules 

r.p.p^g. .   .   r,phg    A\-p 
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(2) Non-temporal operator introduction rules 

r,Pi,P2^g (^ s   ri-gi    A 1-92 

r,piAp2i-g^ '^     r,Ai-giAg2  ^ "^ 

r H g /TVT ^ \    r, p h false ,^^ ^ . 
-(Not;)   -FTrrr^;—(Notr) r, Notq h false ^       ^     T h Notp 

rhpi    r,p2hg        r,phg 

r,pi=>P2i-g rhp=»g^  '^'' 

r,Vx»p(2;)l-g^   '^    rhVx«g(x) 

Note that all the above rules hold even before restriction to executions - i.e., at the abstract 
temporal logic level in the sense of the discussion at the end of Chapter 4 - as is manifest 
since in each rule we could just replace hypotheses'^ F with F, Exec^K. 

From these rules and the temporal equivalences listed in Section 4.2 we can clearly 
derive similar introduction rules for the remaining predicate logic constructors. We will 
later require the following rule for removing disjunction on the left of the turnstile, 

F,pil-g      r,p2l-g-    . 
F,piVp2hg       ^  '^ 

5.1.2    On the temporal extension and further discussion 

The only general temporal reasoning rule that we will add to the DOVE sequent 
calculus is the following forward induction rule. 

init Fi, Always Fa, Previously (Always r) ^ f , 
initFi, Always F2 I- Always r ^^^^ 

The more usual "initial and inductive cases" form is obtained by decomposing under first 
or Notfirst. If first, then Previously (Always r) can be replaced by true, as is obvious 
from the semantics in Section 4.2.1. 

Even this rule holds at the abstract temporal logic level. The crucial observation is that 
Exec^ = (Always Exec/4), as is clear from the semantics in Chapter 4 - executions are 
iteratively built up from executions. 

Induction rules for the temporal operator FromThenOn can also be written down, as 
well as introduction and elimination rules. Similarly, we can write an introduction rule for 
Previously. However, the elimination rule is problematic. For, at the abstract temporal 
logic level the elimination rule 

Always Fi,Previously F2 I- Previously q 

Always Fi, F2 H g 

Wheip appropriate, also replace A with A,Exec.M and then use the rule ext. 
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fails the semantic translation, as is easily checked. The alternative rule 

Previously T h Previously q 
rVq 

is sound at the abstract temporal logic level, but clearly has no extension to the machine 
level. Thus, reasoning based only on sequent calculus is likely to be incomplete, beyond 
all the problems of intuition mentioned earlier. 

Fortunately, an alternative proof process - to which we turn next - can be applied 
quite generally. 

5.2    The iterative proof scheme 

In this section we outline the scheme in a general setting, beginning with the notion 
of predicate transformer embedding of the transition system. 

5.2.1    Predicate transformers 

We have already seen, in Section 3.3, that each edge of a given state-machine is associ- 
ated to a relation between configurations. The state machine can then be identified with 
a transition system with relation semantics. For calculational convenience, we embed this 
description in a predicate transformer model. 

Configuration predicate transformers are simply mappings in (Config^ _> B) _^ 
(Config;^, -y IB). A given relation r between configurations is embedded "demonically" in 
this model as the predicate transformer wp r, such that 

(wp r) <l>c= (Vc' •{re c') => ((/> c')). 

Clearly, (wp r) 0 is the weakest precondition to establish the configuration predicate </. 
via the "evolution" corresponding to the relation r. The calculational convenience of 
representing transitions as mappings between predicates follows from the fact that these 
predicates are just properties of interest in the machine. More generally it is temporal 
formulae - history predicates - which are of interest. Representing the evolution of the 
system directly on temporal formulae is obviously useful for the problem of verification. 
So, we must lift the notion of predicate transformer to history predicates. 

There are a number of ways of constructing the resulting "temporal" predicate trans- 
formers, but probably the most direct is simply to first extend the transition relation to a 
relation between histories", and take the demonic embedding of that as before. Thereto 
we define the temporal relation r-r corresponding to configuration relation r by 

rr ^ ^' _ 1 f^lse,  if a' = (c') for some configuration c', 
\  {cr = a'-) &c {r la ja'),  otherwise. 

' Recall tluit a hLstciry is n non-rivpty list, of configurations. 
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The temporal predicate transformer (wtp r) is then obtained by demonic embedding, 

(wtp r) p a = \/a' • (rx cr a') => {p a'). 

The benefit of this straightforward approach is that (wtp r) p is manifestly the weakest 
temporal precondition to establish a temporal property p by executing the "program" 
embodied in the relation rx- Inserting the definition of rx leaves the alternate form 

(wtp r) p a = (wp r) (Ac • p o^{c)) [a, 

which emphasizes the fact that the temporal predicate transformer is built up "locally" 
by simply extending the history according to the relation r. 

5.2.2    Predicate transformer embedding of the transition sys- 
tem 

The predicate transformer model for a given state-machine M. now follows by embed- 
ding the transition relations. The temporal relation corresponding to an edge e, r = pe, 
relates a given history to the history which extends it consistently with the connecting 
transition in the given edge. In this way, the transition system may be extended to a 
temporal transition system. The initial condition becomes 

ix = (first A   pred(Ac • iM c)), 

and the total transition relation is extended as above.   We will denote by 7x the total 
predicate transformer so obtained, 

TT = (wtp7^^). 

This will be used extensively in the following.  7x P computes the weakest temporal pre- 
condition to establish a temporal property p in the next step in the evolution. 

We will also use the statement that a given temporal formula is true in all initial 
configurations of the given machine, which can be represented via a mapping Xx ivom 
temporal formulae to B, 

Ix p = (first h p). 

5.2.3    Calculation of the wtp in DOVE state-machines 

For any configuration predicate (j), and configuration relation r, the definitions in Sec- 
tion -5.2.1 immediately give 

(wtp r) pred(Ac • ^ c) = pred(Ac • (wp r) 4> c). 

If we had nice intertwining properties for wtp with the temporal logic constructors then an 
efficient computation of a given temporal predicate transformer on an arbitrary temporal 
formula would be to intertwine through to the base configuration properties in the formula. 
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However,jiice intertwining properties only exist when r is restricted to be deterministic - 
i.e., r = f, where 

fcc' = ic' = {fc)) 

for some function / - in which case, clearly 

{v^pf)<f>c={cf>{fc)). 

The intertwinings with the remaining constructors of the temporal logic are then reason- 
ably intuitive for the deterministic relation. 

(wtp /) (Not p)   =   Not((wtp /) p) 
(wtp /) (p A g)    =    ((wtp /) p)^A ((wtp /) q) 

(wtp /) (Vx mpx)    =   Vi • (wtp /) (p i) 
(wtp /) (Previously p)   —   p 

(wtp /) (p FromThenOn q)   =   ((wtp /) q) A (((wtp /) p)V 
(p FromThenOn q)) 

There are two reasons - manifest in Definition 3 of Section 3.2 - why this does not 
hold for the transition relations derived from the transition definitions in a DOVE state 
machine: Firstly, the assignments are guarded. Secondly, the inputs are not determined. 
However, as discussed there, we have explicitly separated out a deterministic assignment 
which therefore willhave nice intertwining properties. Inserting that form into the demonic 
embedding formula, and keeping the input quantification explicit, we are left - for a given 
edge € - with 

(wtp p,)pa = (Vi •Ge l<r ^ (wtp Ti) p a). 

We will use the shorthand A\ for (wtp J^i), the temporal predicate transformer corre- 
sponding to the deterministic assignment; thus, we have 

A\pa = ipo^{r,la)). 

We will refer to the temporal formula {A\ p) as the back-substitution of p through edge e 
(while updating the inputs with value i). This is the form which will be utilised in the 
DOVE implementation. 

5.2.4    The iterative calculation 

The aim now is to outline informally the general scheme for verifying temporal formu- 
lae. 

Recall that Tp p computes the weakest temporal precondition that p is established at 
the next step in the evolution. Thus the ■n}^ composition, which we denote T^ p computes 
the weakest temporal precondition that p is established after n more steps in the evolution. 
From this composition starting in the initial configuration, we obtain the statement 

lT(Tf p), 

that all executions of length n model p. Finally then, wo have that 

h p = (Vn . IT(7? p). 
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We will refer to this as the composite representation of A^-validity. Again, this just 
embodies the obvious statement that verification of a machine property p can be split 
up into showing that all executions of length n model p, for all n. 

Of course this is still an infinite number of requirements, so not much progress is 
apparent! However, recall the notion of an invariant. We say that p is an invariant of a 
given machine M if: 

1. IT p; and, 

2. p =» (7x p) is valid. 

In particular, this is invariance under a step in the evolution of the machine. Invariance 
implies A^-validity: 2 effectively says that if a given execution models p, so does its 
extension by one step, and 1 says an execution of length one models p. Moreover, to check 
invariance is a problem in sequent calculus which is rather simpler than proving the full 
At-vahdity in general. 

The idea of the iterative calculation may now be apparent. First we check whether 
the first n extensions from any initial configuration satisfy p. We then generalize the 
"inductive" part of the invariance definition to check if, for any history, the extension by 
n + 1 steps models p when we know extensions up to the n*'^ step do. This can be carried 
out successively in n, until the inductive step is successful, or the "initial case" fails. The 
following is a high-level "algorithm" for verifying a machine property p. 

Step 1. Initialize Ace to p, and initialize Pres to p. 

Step 2. Check Jx Pres. 

Step 3. If this fails then finish with result False, otherwise 

Step 4. check that the temporal formula (Ace =^ (Tj Pres) is valid. In practice, this means 
to apply sequent calculus at the abstract temporal logic level. 

Step 5. If this succeeds then finish with result True, otherwise 

Step 6. reset Aee to (Aee A (7^ Pres)), and reset Pres to (Tp Pres), and proceed from Step 2. 

The result of the iteration terminating is either that a temporal formula p is falsified in a 
finite number of steps, or that for some n > 0 

XTP,  JT(TTP),...,ZT(TT», 

and we have established the validity of 

p A  {TTP)  A   ...A {T? P) =^ {T^+'P) . 

These last two results together clearly imply the validity of p. 

An alternative statement of the successful termination is that, for some n > 0, the 
property p A (Tr p) A ... A {T{! p) is an invariant of the state-machine (and, in 
particular, is M-vsdid). From a straightforward argument using the cut rule we then 
immediately deduce jM-validity of p. 
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Chapter 6 

Impleraentation of the proof 
scheme in DOVE 

The DOVE implementation of the calculational scheme introduced in Section 5.2.4 must 
respect the fact that the user needs to be comfortable with the information being presented 
at each step. It must also take into account that many users are not particularly familiar 
with the detailed use of formal methods for verification. 

In Step 4 of the algorithm, sequent calculus must be used judiciously to prove validity 
of a given formula which is apparently diverging further and further from the original goal. 
The user must make a decision, at each iteration, as to whether this can be completed 
successfully, or whether to return to the branching goal and proceed with further iteration 
of the algorithm. This is problematic, both because the decision may be quite nonobvious, 
and because the work done in trying to verify the formula is then completely wasted. 

In the current version of DOVE a modified scheme has been pursued. It is "morally" 
based on the proof scheme of Section -5.2.4, but differs in a number of respects. 

- Previously, the full transition relation was used at all steps. This is good for keeping 
all hypotheses constructed from different transitions together, but makes for quite a 
rness of information. In the modified scheme the goal to be proved is first decomposed 
into subgoals under the topology of the graph, and the weakest temporal precondition 
in a given subgoal is then only taken with respect to the corresponding edge. 

- Previously, the iteration formula at Step 4 must be shown valid - i.e., verified at 
the abstract temporal logic level. This may allow a stronger sequent calculus, but 
took the user into a different context. In the modified scheme the reasoning is, at 
all stages, at the machine level. 

- Previously, if the sequent calculus did not terminate the algorithm at Step 4, the 
user must return to a previous stage - thus "losing" all that effort - before applying 
the next iteration of the algorithm. In the modified scheme the user launches a 
new iteration from the proof state remaining after the sequent calculus verification 
attempt. 

In this way the implementation desiderata are reasonably well achieved. The cost is that 
the completeness of the scheme is no longer obvious. 
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In this section we provide details of the modified scheme and its corresponding DOVE 
support. A comparison to the complete scheme in Section 5.2 is provided. We end with 
an illustration of its use in the TrafficLights theory. 

6.1    Implementing a modified proof scheme 

The problem at hand is to verify a given temporal formula in a given state machine. 
To do this, we apply the following strategy. 

Tactic 1. Induction: apply the temporal induction rule of Section 5.1.2. 

Tactic 2. Topology: separate the initial case from the goal to be proved, and solve it using 
the initial predicate information and the (non-temporal) sequent calculus of Sec- 
tion 5.1.1. If this fails then the property is false and the strategy terminates. Oth- 
erwise, further decompose into a set of subgoals characterized by the edges of the 
state machine graph. 

Tactic 4. Back-Substitute: back-substitute a given subgoal through the corresponding edge to 
drag the proof burden back to the context of the previous state. 

Tactic 5. Sequent Calculus: apply the (non-temporal) sequent calculus of Section 5.1.1 and 
attempt to discharge the resulting subgoals. 

Iteration: If unsuccessful, the user can now continue iterating this procedure from Tactic 2. 
Otherwise, the user can start on another subgoal. 

When all subgoals have been verified, the original goal has been proved. 

Note that the tactic Sequent Calculus has been covered in Section 5.1, so we concentrate 
on the other tactics of the modified scheme 

6.1.1    Implementing Induction 

The temporal induction rule has also been presented in Section 5.1. One subtlety, 
whose relevance will be seen below, is that the first thing to do in this step - i.e., before 
applying the induction rule - is to apply the rule 

I- Always p 

In fact, there is a temporal equivalence that h p if an only if h Always p. The former says 
that all executions model p, whilst the latter says that all prefixes of all executions model 
p obviously these are semantically the same thing. If p is already an "always" property, 
then this rule has no effect. 
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6.1.2    Implementing Topology 

This tactic is implemented via a number of obvious theorems which simply encode the 
topology of the state machine. If Not first holds at some point in any execution, then 
the corresponding configuration must record the end state of an edge in the state machine 
graph. Thus we have 

(EC). 
l-first V(Vj,fg Not first A Previously (At 6) A By t A At e) 

This theorem may be applied to decompose the current proof state into a number of 
subgoals: one subgoal for the initial case, and one for each edge in the state machine graph. 
We call these the initial case decomposition, and the edge decomposition, respectively. 

To achieve the decompositions, consider a sequent representing the proof state, or goal, 
r \- p. We can now use the sequent calculus rule cut, resolved with EC, to introduce the 
further hypothesis first V(Vj,tg Not first A Previously (At 6) A By t A At e). We say that 
the hypothesis has been cut into the sequent. The resulting sequent is now decomposed 
into two by apply the rule V/. This is the initial case decomposition. The initial state 
information can be cut into the first subgoal via the following rule 

-(IS). 
first h At InitialState 

Repeated application of V; on the remaining subgoal then effects the edge decomposition. 

Each subgoal now refers to a specific part of the state machine, and this information 
is reported to the user by highlighting of the corresponding edge of state on the state 
machine graph. This immediate proof visualization can be useful for book-keeping in a 
comphcated proof. 

6.1.3    Implementing Back-Substitute 

A sequent representing a subgoal in the proof state at some point in the proof procedure 
can be verified via its weakest temporal precondition. For, observe that 

first f- p       h 7T p 

which is a simple consequence of the composite representation of A^-validity, and the 
definition of JT- Of course, a given subgoal will also have hypotheses, so we actually must 
apply this result with p replaced by r=»p, giving 

first, rhp       \-Tr{r=^p) 
T\-p 

To simplify this expression we first observe that, as a consequence of the Topology 
tactic, there will be a unique initial case. The Back-Substitute tactic cuts the initial 
condition into this case via the obvious theorem 

"(IP), first I- InitialPredicate 
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and then simplifies (or, if possible, discharges) it using sequent calculus. 

The subgoals remaing from the Topology tactic refer to a fixed edge with the hypothesis 
Not first. We may then use the guarded action decomposition of Section 5.2.3 for back- 
substitution through the given edge. The desired rule for 6 « e is then easily derived to 
be 

Not first, Previously(At 6), By t, At e, T h p^^"^"^) 

Note that DOVE pretty-prints the semantics back into concrete syntax for display to the 
user. Here we follow this more accessible form. 

The Back-Substitute tactic applies this rule to a given subgoal in the edge decom- 
position. It again continues with sequent calculus rules in an attempt to discharge the 
resulting subgoal. It is worth stressing that the back-substitution rule for edge tie, can 
only be applied after the Topology tactic. 

6.2    Comparison of the proof schemes 

The connection of the modified scheme to the complete scheme is not at all immediately 
obvious. However, some motivating remarks may be useful. 

Recall that in the complete scheme, for each n > 0, we are testing 

first h p,   first h (7^ p),   ... first h (7? p), 

and the validity of 

p A  (TT p)  A   ...   A  (TT" P) => (7:^^+1 p). 

Observe that we can replace the latter formula with 

p, (TTP),   ...,iTpp)\-{T^+'p), 

without any loss of generality (though possible loss of efficiency) since 7^ extends execu- 
tions to be executions. We will now see how such formulae appear at intermediate stages 
of the modified scheme, albeit with Tp broken up edge-wise as a result of the topology 
tactic. 

In the modified scheme, to verify p we start with h p and apply the induction rule 
-pAlways- The resulting goal is 

Previously (Always p) \- p. 

Applying the Topology tactic then produces the initial case first h p, and the edge decom- 
position of Not first. Previously (Always p) h p. We now use the back-substitution rule 
for each edge. From the intertwining rules of Section 5.2.3, for the deterministic action 
through edge e we have 

4 (Not first)   = Not {Ai first) 
= true;and, 

A] Prcviously(Always p)   = Always p 
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and the resulting subgoal for the given edge is 

0e, Always ph A\p. 

At this stage we have, in essence, reproduced the first iteration of the complete scheme. 

A further iteration can now be launched by applying the Topology tactic. The initial 
cases are first \- Alp for each edge. Again, back-subsitution follows the further edge-wise 
decomposition . 

It is now clear why we needed to replace p with Always p to start the modified scheme. 
The "Previously(Always p)" term brought into the hypotheses will generate edge-wise 
decompositions of the hypotheses "(Tip* p)" obtained previously. For, using 

Always p = (p A Previously (Always p)) 

and the intertwining 
4(pA5) = ((4p)A(4g)) 

in the iterated edge-wise decomposition, this term back-substitutes from 

p A Previously(Always p) 

at the first stage above, to 

p A  {A\> p)  A Previously (Always p) 

after the next stage. This pattern continues, each time producing an extra composition of 
back-substitution through an edge. 

In this way, we are again essentially producing each iteration of the complete scheme 
(the appropriate initial cases produced correctly by the Topology tactic required to launch 
the iteration). Figure 6.1 illustrates this situation in an example where the state machine 
graph would have two edges. The left represents the complete scheme, and on the right we 
see how the edgewise paths are broken up in the intervening Topology tactic. Note that 
different paths on the right will in general be different lengths, depending for example on 
how far the user pursues Back-Substitute before being able to discharge the goal. 

The difference between the two schemes is that, since 7T is broken up edge-wise, the 
modified scheme at any given stage in the iteration will typically be missing hypotheses 
which are naturally included in the complete scheme. As a consequence, the user may have 
to prove intermediate lemmas - to be cut into a problematic subgoal - which produce 
the same effect as the missing hypotheses. This problem will only appear when back- 
substituting around loops in the state machine diagram - the simplest such being the 
"Wait" transitions in the traffic lights example. 

6.3    An example proof in the TrafRcLights theory 

We consider the problem of verifying the property 

Always((Not first A By NSChangeGreen) ^ NLight = Green). 
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Figure 6.1: Comparison of proof schemes. 

This is rather easy of course, and just presented as an illustration of the technique. The dis- 
cussion is reasonably self-contained. In particular, the reader should observe that the only 
relevant edge in the first iteration of the proof strategy is (AIIRed, NSChangeGreen, NSGreen). 

The first step is to use the (FAiways) rule to eliminate the Always operator by forward 
induction. Simplifying the result via application of (=»r) and (A/), leaves 

Previously(Always((Not first A By NSChangeGreen) => NLight = Green)), 
Not first, 
By NSChangeGreen 
I- NLight = Green 

The Topology tactic then separates out the initial case - which is trivial due to the 
Not first hypothesis - and leaves the single edge contribution 

Not first. 
Previously (Always ((Not first A By NSChangeGreen) => NLight = Green)), 
Previously (At AIIRed), 

By NSChangeGreen, 
At NSGreen 
I- NLight = Green 

The back-substitution rule BS is now applied, together with the intertwining rules for 
simplifying wtp, leaving the subgoal 

(Not first A By NSChangeGreen)=>NLight = Green, 

Previously(Always((Not first A By NSChangeGreen) => NLight = Green)) 
At AIIRed 
h Green = Green 
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which is easily discharged. 

6.3.1    Introducing intermediate lemmas 

A sHghtly harder example, which demonstrates the necessity of introducing intermedi- 
ate lemmas in the modified scheme, is verification of the property that specifies the colour 
of NLight in the state EWAmber, 

h Always(At EWAmber =» NLight = Red). 

The steps of the proof scheme are straightforward to carry out. The first step is to apply 
(-^Always) and simplify, leaving 

Previously(Always(At EWAmber => NLight = Red)), 
At EWAmber 
h NLight = Red 

Applying the Topology tactic leaves the initial case - which is a simple contradiction 
between the hypothesis AtEWAmber and the fact that the initial state is AIIRed - and the 
edge decomposition contributions from WaitTO and EWChangeAmber. The wait transition 
subgoal is immediately discharged by the Back-Substitute tactic, since the Previously 
hypothesis comes into play when dragged back to the state EWAmber. 

Back-substitution through the remaining edge drags us back to the subgoal 

At EWGreen I- NLight = Red . 

Note that the "useless" hypotheses - for example those stating the colour of NLight in the 
state EWAmber, and the rest of the transition guard - have been pruned away by using 
the tactic ext. At this stage another round of iteration is launched, beginning with the 
Topology tactic. The initial case is easy as before, leaving two cases: 

- By EWChangeGreen, which is dragged back under the Back-Substitute tactic to the 
state AIIRed. That the North fight is Red in AIIRed is manifest when LastGreen = NS, 
as is implied by the guard of the transition EWChangeGreen and therefore appears as 
a hypothesis after backsubstitution. For, the back-substitution along NSChangeRed, 
and the initial predicate appHcable for the first case in AIIRed, obviously impose 
NLight = Red, while back-substitution along EWChangeRed requires LastGreen = EW 
and so produces contradictory hypotheses. 

- By WaitNS, for which the corresponding subgoal has the form 

Not flirst. 
Previously(Always(At EWAmber =» NLight = Red)), 
(At EWAmber =» NLight = Red), 
Previously (At EWGreen), 
By WaitNS, 
At EWGreen 
h NLight = Red. 

39 



DSTO-RR-02r)5 

Under the Back-Substitute tactic the state returns to EWGreen. However, the hy- 
potheses about the state EWAmber are clearly of no use in proving something about 
EWGreen. Hence, this subgoal cannot be directly proved by back-substitution. How- 
ever, the fact that N Light is Red in the state EWGreen is manifestly correct from the 
definition of the TrafficLights state machine! 

Thus this second item brings up the required lemma, which is simply the property which 
specifies that NLight is also Red in the state EWGreen, 

h Always(At EWGreen =» NLight = Red) 

40 



DSTO-RR-0255 

Chapter 7 

Conclusions 

This paper has presented the foundations of a formal-theoretic approach to state machine 
designs in the DOVE system. Specifically, we have provided a language for representing 
behavioural properties of state machines, and proposed a formal proof system for verifying 
that proposed properties are satisfied by given designs. From this formal structure, a 
detailed discussion of the theoretical aspects of the DOVE system has been given. 

The DOVE system has been implemented and released. Its implementation not only 
provides a powerful tool for the design of critical systems, but also demonstrates how 
domain-specific proof steps - such as repeated back-substitution - can be compiled into 
tactics for use in a general-purpose, low-level proof assistant such as Isabelle. 

In the remainder of this last section we present our outlook for future work, after a 
quick review of the related literature. 

7.1    Related work 

As is well known, temporal logic has been widely used as a formalism for program 
specification and verification [s, 17, 24, -2',], temporal reasoning [.U'l, 38], modeling temporal 
databases [1, 14, lo, :i()], simulation apphcations [21, 41] and so on. More recently, there 
has been a substantial interest in the use of temporal logic for specifying properties of 
reactive systems [5, 7, 12, IS, 22, 2->, 2(i, 27]. For comparison with the DOVE system, we 
will briefly consider just two from this list: the logic of Manna and Pnueh [25, 27]; and 
TLA (the Temporal Logic of Actions), proposed by Lamport [18]. 

In the logic of Manna and Pnueli, transition systems [!)] are used as a computational 
model for reactive systems, and temporal logic is used as a specification language to express 
properties which must be satisfied by any proposed implementation. 

The dual language approach employed in the DOVE system is similar to the approach 
proposed by Manna and Pnueli [27], which the STeP (Stanford Temporal Prover) sys- 
tem [::;] that supports the computer-aided verification of reactive systems is based on. 
As in the DOVE system, the language for specifying state-machines is based on state 
transition diagrams and the formal meaning of a state machine is determined in terms of 
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sequences of states; the temporal logic is used for expressing machine properties. How- 
ever, the approach of Manna and Pnueli is based on first order logic. They propose two 
types of verification techniques [17] - a deductive approach, which provides a set of rules 
that reduce the task of proving a timing property to checking the validity of first-order 
formulas, and an algorithmic approach, which presents algorithms for automatic verifica- 
tion of timing properties. By contrast, in the DOVE system state-machine definitions are 
encoded as a set of axioms in the temporal logic. The sequent calculus method used is 
based on a deductive system for formal proof, and the deductive system is implemented 
in Isabella HOL [V.'i]. The temporal properties of a state machine can be verified by using 
the powerful HOL proof capabilities such as backward reasoning with tactics and tacticals. 

Rather more different is the logic TLA, where just one language is used as opposed 
to the two in DOVE. In the framework based on TLA, systems and their properties are 
represented in the same logic. So, the assertion that a system design meets its specifica- 
tion, and the assertion that one system implements another, are both expressed by logical 
implication. Therefore, it is possible to formulate critical properties in a straightforward 
way. TLA also minimizes temporal reasoning, relying on ordinary, nontemporal reason- 
ing whenever possible. TLA is suitable for specifying and reasoning about concurrent 
algorithms. 

There are also other approaches to design verification that are based on using a single 
language for both design and requirements specification; two examples are Statecharts [Ki] 
and RSML [ID]. However, using such a language makes it difficult to formulate the critical 
properties of a system in a sufficiently abstract way. 

There also exists several impressive tools with aims similar to those of DOVE, such as 
KIV [-V.)], Cogito [\ !] and PVS [M]. These are wider ranging in their application: they 
support reasoning in richer specification and design languages; and they can be used for 
a larger portion of the development phase. All of these tools support proof visualisation 
(for example, proof tree viewing), but none of them incorporate diagrammatic control of 
proofs in the application-domain level as the DOVE system does. 

There are numerous existing examples of diagrammatic reasoning, but they differ from 
the examples of DOVE in several ways. Firstly, most of the existing mechanised support 
for formal reasoning using diagrams are developed for mathematical domains, rather than 
as notations for systems description such as state machines. Examples related to system 
designs do exist, such as [1.!], but mechanised support for reasoning in these frameworks is 
not well developed. Secondly, the popular approach in diagrammatic reasoning is to treat 
diagrams as first-class logical objects. This complicates the compilation of theories into 
an existing powerful proof assistant, as a theory of diagrams must then be formulated, 
in addition to the underlying semantic theory for the objects that are represented in 
diagrams. 

In terms of fiilly-automated formal verification, the most successful approach has been 
that of model-checking [Js, A:-]. These techniques are being actively developed. However, 
such an approach is limited to finite state machines, or tho.se that can be transformed 
to finite machines for verification purpose. The state-machine language described in this 
paper goes far beyond finite state machines. The typing language is very rich (that of 
Lsabello's HOL) and contains higher-order variables. 
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7.2    Outlook 

The DOVE system uses Isabelle [34] to provide the basic logical and bookkeeping fea- 
tures for reasoning about state machine designs. The Isabelle system is a well-developed 
theorem-proving system with a large user base, and this application provides further evi- 
dence of its usefulness for software/system development purposes. The modelling of state 
machines and temporal properties in the DOVE tool also represents a significant applica- 
tion of Isabelle. Although Isabelle is natural deduction based, it has such great flexibility 
that there was Uttle problem in constructing the sequent calculus over HOL expressions. 
The richness of the ML language allowed us to formulate easily the complicated tactics 
required, and to calculate values required for the graphical displays. 

Extensions and improvements to the theoretical framework are being considered. Some 
of the future aims are listed here. 

- A more expressive property language could be incorporated, as well as annotation 
of states with proved results which could then be used in later proofs. 

- It should be possible to take into account structural features of state-machine graphs 
that users employ in reasoning but which are not currently supported by DOVE. The 
most notable example of this is the grouping of states and transitions into sub state- 
machines to provide a hierarchical structure. Currently a user can state and prove 
results about a disjunction of a number of states, but this can be quite awkward. 
Such a feature would be a useful extension to the tool, especially for reasoning about 
larger state machines. Thus we will also be incorporating hierarchies and abstraction, 
to facihtate understanding and reasoning about state machines. 

- Further enhancements to the Xlsabelle prover interface are also planned - and there 
has already been some progress on this front. The authors expect that great im- 
provement in the usability of the DOVE tool can be achieved by addressing some 
basic problems with general proof management in Xlsabelle, and Isabelle's subgoal 
package itself. 

- The investigation of concurrent state machine designs has begun. This involves 
providing new state machine definitions that are suitable for expressing concurrency, 
and methodologies for modelling concurrency of such systems. We will also need to 
develop the appropriate proof system for verifying properties of concurrent state 
machines. 

- It is planned to support "top-down" reasoning by allowing the user to prove refine- 
ment steps of a formal specification. 

- A dataflow description of the high-level design could be incorporated to capture 
further informal understanding at this level. 

- Probabilistic specifications, and stochastic dynamics for the state machines, are other 
extensions being investigated. 

When completed, these extensions will bring the DOVE tool to the forefront of formal 
design. 
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Appendix A    Syntax for the state machine 
theory produced by DOVE 

The language used in constructing a DOVE state machine is an extension of the Is- 
abelle/Isar language. The reader unfamiliar with this syntax should consult [29]. Here 
we tailor our discussion to highlight the differences with and extensions of the basic Isar 
commands, although we will also include a description of the Isar commands found in the 
example of Subsection 3.1 for completeness. In the following: 

- id is an identifier; i.e., a string of alphanumeric characters and underscore which 
must begin with a letter; 

- type stands for any Isabelle type available in the state machine theory; 

- expr stands for any mathematical expression (Isabelle term) in the variables and 
constants available in the state machine theory; and, 

Moreover, we distinguish terminals of the grammar by enclosing them in single quote 
marks. In particular, we use the unusual device that " indicates a linebreak (or simply an 
empty line). 

A.l    Extensions to the Isar command set 

A.1.1    startmachine 

initializes the theory, providing default values for the ML constructs which are pro- 
duced. 

A.1.2    states statelist 

declares the state names of the state machine in the following syntax. 

statelist    —>■    id 
I       statelist '|' id 

The state identifiers are automatically produced from the user-drawn state-machine 
diagram. Of course, there are a finite number of state names. The other labels on the state- 
machine diagram are the transition names, which are declared implicitly in the transdef 
commands below. 

A. 1.3    inputs inputded 

declares input variables with specified (value) type in the following syntax. 

inpxitd,ecl      >    id '::' type 
I       inputded " id '::' type 
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A.1.4    heaps heapded 

declares heap variables with specified (value) type in the same syntax as for the inputs 
command. 

A. 1.5    initpred expr 

declares the initial predicate of the state machine. 

A.1.6    transdef id tdefn 

declares a transition name, and the corresponding definition in the following syntax. 

tdefn    —>    let.expression 
guard-part 

let .expression 

guard-part 

action_part 

action.part 

 .    () 

I      LET assignmentlist 

I       GUARD expr 

I       ACTION assignmentlist 

assignmentlist    —>    id GETS expr';' 
I       assignmentlist id GETS expr';' 

ACTION    - -*    'Act:' 
GETS    - _,    '<__' 

GUARD    - -^    'Guard 
LET    - ■^    'Let;' 

A.1.7    graph id edgelist 

declares the start state, and the list of edges in the state machine graph via the following 
syntax. 

edgelist    —>    id '—'zd'~>' id 
I       edgelist '|' id '—'zd'—>' id 

A.1.8    endmachine 

is callod to ensure that all of the above declarations of the state machine arc added 
into the state machine theory The first step is to declare the configuration types, then 
the constants associated to injMit and heap variables, then the initialisation predicate, and 
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finally all of the transitions. Transparent to the user, this command actually produces an 
Isabelle theory of the state machine in the abstract model described in Section 3.2. 

A.2    Isar commands appearing in the TrafRcLights theory 

Beyond the command syntax introduced above, several standard Isar commands ap- 
pear. Of course, this is just a small selection of the standard commands'"^ - and the user 
is able to enter others beyond these. For completeness we first review their function, and 
comment on their use. 

A.2.1    theory thn = DOVE+thui... 

declares a new Isabelle/Isar theory thn built on a pre-existing theory, DOVE. Op- 
tional extra theory dependencies are added by listing them after DOVE, with separating 
-|-'s. Thus, the Isar syntax is maintained except that the "files" clause is not currently 
supported. 

A.2.2    datatype Ci | C2 ... 

is the simplest possible enumerated type definition. Isar allows much more general 
recursive definitions. DOVE also allows type synonyms, which would appear in the stan- 
dard Isar types command. Noting that theories of type definitions can be included in the 
theory command, the allowed types in DOVE state machines are any type which can be 
produced in Isabelle; i.e., they are essentially arbitrary. 

A.2.3    consts en :: a 

declares a constant en to have any instance of the type scheme a. These are functions 
which the user introduces, any corresponding rules will appear in axioms commands as 
in standard Isar. 

'For more details the user should consult ['']. 
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Appendix B    DOVE syntax for property 
specification 

DOVE state-machine properties are written by the user in a concrete syntax which is 
summarized in the following syntax tree, up to the notational simplifications: 

- "nontemporal" stands for any (boolean-valued) expression which can be written 
using the variables and constants (with their concrete types) defined in the user's 
theory, and from any included theories; 

- id is an identifier, as used in Appendix A; 

- idts stands for a list of identifiers with optional specification of type; 

- where needed to disambiguate, the operator arguments are specified. 

The user can employ the function application or lambda abstraction of the Isabelle HOL 
syntax as explained in [-!()]. The syntax tree is then straightforward to understand. 

sequent 

formulalist 

formula 

formulalist TURNSTILE formula 
TURNSTILE formula 

formula 
formulalist ',' formula 
formula AND formula 
formula OR formula 
formula IMPLIES formula 
formula CONGRUENCE formula 
formula FROMTHENON formula 
formula FROMTHENONS formula 
MOSTRECENTLY formula formula 
MOSTRECENTLYS formula formula 
FORALL idts . formula 
EXISTS idts . formula 
ALWAYS formula 
SOMETIME formula 
formula 
NOT formula 
PREVIOUSLY formula 
PREVIOUSLYS formula 
INITIALLY formula 
AT id 
BY id 
FIRST 
TRUE 
FALSE 
nontemporal 

r)() 



ALWAYS    - -^    '[-]' 
'Always' 

AND    - -^    '&' 
'And' 

AT    - ->    '@-' 

'At' 
BY    - ->    '>-' 

'By' 
CONGRUENCE    - ->    '<—>' 

'EquivalentTo' 
EXISTS 1_ . 2_    - -^    '? 1_  .  2_' 

'Exists 1_ . 2_' 
FALSE    - -^    'False' 
FIRST    - -^    'first' 

'First' 
FORALL 1_ . 2_    - ̂     '!   1_  .  2_' 

'ForAll 1_ . 2_' 
FROMTHENON    - -».         'rN.~>' 

'FromThenOn' 
FROMTHENONS    - —^         'rv^~>S' 

'FromThenOnS' 
IMPLIES    - ̂     '—>' 

'Implies' 
INITIALLY    - -^    'init' 

'Initially' 
MOSTRECENTLY 1_ 2_    - -^    '<(!_)  2_' 

'MostRecently 1_ 2_' 
MOSTRECENTLYS 1_ 2_    - -^    '<S(1_)  2_' 

'MostRecentlyS 1_ 2_' 
NOT    - -^    '~' 

'Not' 
OR    - -.    '1' 

'Or' 
PREVIOUSLY    - -    '(-)' 

'Previously' 
PREVIOUSLYS    - -    '(S)' 

'PreviouslyS' 
SOMETIME    - -^    '<->' 

'Sometime' 
TRUE    - -^    'True' 

TURNSTILE    - -^    'I-' 
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